Acta Crystallographica Section B

Structural

Science

ISSN 0108-7681

Khodayar Gholivand, ${ }^{\text {a }}$ * Hossein Mostaanzadeh, ${ }^{\text {a }}$ Tomas Koval, ${ }^{\text {b }}$ Michal Dusek, ${ }^{\text {b }}$ Mauricio F. Erben, ${ }^{\mathrm{c}}$ Helen Stoeckli-Evans ${ }^{\text {d }}$ and Carlos O. Della Védova ${ }^{\mathrm{c}, \mathrm{e} *}$

[^0]
Syntheses, spectroscopic study and X-ray crystallography of some new phosphoramidates and lanthanide(III) complexes of N-(4-nitrobenzoyl)$N^{\prime}, N^{\prime \prime}$-bis(morpholino)phosphoric triamide

New phosphoramidates with the formula $R \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O}) X_{2}$, $R=2-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}, 3-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$ and $4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}, X=$ $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ (1)-(3), $\mathrm{NC}_{4} \mathrm{H}_{8}$ (4)-(6), and $\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}$ (7)-(9) were synthesized and characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$ NMR and IR spectroscopy, and elemental analysis. The reaction of (9) with hydrated lanthanide(III) nitrate leads to ten- or ninecoordinated complexes, (10)-(13). The crystal structure has been determined for (3), (5), (9), (10) and (13). In contrast to all of the previously reported similar phosphoramidate compounds, the $-\mathrm{C}(\mathrm{O})-\mathrm{N}(\mathrm{H})-\mathrm{P}(\mathrm{O})$ skeleton in the free ligand (9) shows a cisoid conformation, with the $\mathrm{C}=\mathrm{O}$ and $\mathrm{P}=\mathrm{O}$ double bonds adopting a nearly syn conformation. Quantum chemical calculations were applied for clarifying this exceptional conformational behavior. The monodentate neutral ligand (9) is coordinated to the metal ions via the phosphoryl O atom, adopting the usual anti conformation between the $\mathrm{C}=\mathrm{O}$ and $\mathrm{P}=\mathrm{O}$ groups.

1. Introduction

The chemistry of phosphoramidates has been developed recently due to their biological activity (Baldwin et al., 2003; Pang et al., 2003), their coordination chemistry (Gubina, Ovchynnikov et al., 2000; Trush et al., 1999; Amirkhanov, Ovchinnikov et al., 1997; Amirkhanov, Ovchinnikovç et al., 1997) and the catalytic behavior of these compounds (Denmark \& Fu, 2003; Denmark et al., 2006). Recently, novel synthesized phosphoramidate from 3-hydroxypropyl derivatives of nonsteroidal anti-inflammatory drugs (NSAID) showed significantly greater inhibitory activity than the corresponding 3-hydroxypropyl derivatives (Wittine et al., 2009). Moreover, amino acid phosphoramidate nucleotides were reported as alternative substrates for HIV-1 reverse transcriptase (Adelfinskaya \& Herdewijn, 2007). Phosphoramidates of the general formula $R \mathrm{C}(\mathrm{O}) \mathrm{NHP}(\mathrm{O}) X_{2}$, are P, N substituted analogues of β-diketones and are potential O, O^{\prime} donor ligands. The first studies of the coordination chemistry of phosphoramidates were devoted to complexes of the lanthanides because of the high affinity of the phosphoryl group for the rare-earth elements (Caudle et al., 1985). Although the crystal structures of some phosphoramidates and a few complexes have been reported recently (Gholivand, Mostaanzadeh et al., 2006; Skopenko et al., 2004), little is known about high coordination number complexes of lanthanide with monodentate phosphoramidate ligands (Ovchynnikov et al., 2000). Very recently, Znovjyak et al. (2009) reported the syntheses and magnetic properties of lanthanide complexes with phosphoramidates and 1,10-

[^1]Received 11 February 2010
Accepted 18 May 2010
phenanthroline ligands. Moreover, the crystal structures of neodymium complexes were determined.

In this work we report on the synthesis, the spectroscopic characterization, elemental and thermal analysis, and the X ray crystal structure determination of several new phosphoramidates with the general formula $n-\mathrm{NO}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NHP}(\mathrm{O}) X_{2}$ (1)-(9), with $n=1-3$ and $X=$ amine (diethyl amine, pyrrolidine and morpholine). Furthermore, the utility of these compounds as ligands for coordination chemistry with lanthanide metals was evaluated. The synthesis and spectroscopic characterization of four lanthanide(III) metal complexes (10)-(13) with the N-(4-nitrobenzoyl)- $N^{\prime}, N^{\prime \prime}$ bis(morpholino) phosphoric triamide ligand are reported, including the determination of the crystal structure for (10) $\left(\mathrm{La}^{3+}\right)$ and (13) $\left(\mathrm{Er}^{3+}\right)$.

2. Experimental

2.1. Spectroscopic measurements

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ spectra were recorded on a Bruker Avance DRS 500 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts were determined relative to internal TMS, ${ }^{31} \mathrm{P}$ chemical shifts relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as an external standard. Table 1 lists the most relevant NMR data for the compounds studied. IR spectra were recorded on a Shimadzu model IR-60 spectrometer. Elemental analysis was performed using a Heraeus CHN-O-RAPID apparatus. Melting points were obtained with an Electrothermal instrument. Differential thermal analysis (DTA) and thermal gravitational analysis (TGA) were performed on a Perkin-Elmer Pyris Diamond TG/DTA thermal analyses system performed in nitrogen with a heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$ from 313 to $973 \mathrm{~K} . n-\mathrm{NO}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NHP}(\mathrm{O}) \mathrm{Cl}_{2}(n=2,3$ and 4$)$ were prepared by a procedure similar to that by Kirsanov \& Makitra (1956) from the reaction of phosphorus pentachloride with n-nitrobenzamide ($n=2,3$ and 4) and then treatment with formic acid.

2.2. X-ray measurements

X-ray data of (5) were collected on a four-cycle diffractometer Gemini equipped with an Atlas CCD detector, for (3), (9) and (10) on a Bruker SMART 1000 CCD area detector, and for (13) data were collected on a Stoe Mark II image-plate diffraction system equipped with a two-circle goniometer. In all cases graphite-monochromated $\mathrm{Mo} K \alpha$ radiation ($\lambda=$ $0.71073 \AA$) was used. All the structures were solved by direct methods. Structure (5) was refined with JANA2006 (Petricek et al., 2006), and structures (3), (9), (10) and (13) with SHELXL97 (Sheldrick, 2008), using the full-matrix leastsquares method. JANA2006 uses the weighting scheme based on the experimental expectations (see _refine_ls_weighting_details in the CIF) that do not force S to be one. Therefore, the values of S are usually larger than those from the SHELX program (see Table 2). In (9) one of two morpholine moieties is disordered by two positions with relative occupancies equal to $0.55: 0.45$. Atoms N 2 and $\mathrm{C} 5 A$ are common to both disordered parts. Owing to the close positions of the
disordered atoms all distances inside the ring were restrained with $D F I X$ instructions, and an ADP instruction was applied to make ADPs of chemically equivalent atoms equal. CCDC 709114, 691914, 678070, 678074 and 713519 contain the supplementary crystallographic data for (3), (5), (9), (10) and (13), respectively. X-ray powder diffraction (XRD) measurements have been performed using a Philips diffractometer of X'pert Company with monochromated $\mathrm{Cu} K \alpha$ radiation. The ORTEP program was used for making the stereo drawings (Farrugia, 1997).

2.3. Quantum chemical calculations

Full geometry optimization and frequency calculations were performed using the program package GAUSSIAN03 by applying the DFT/B3LYP methods using the $6-31+\mathrm{G}^{*}$ basis set (Frisch et al., 2003). The calculated vibrational properties corresponded in all cases to potential energy minima for which no imaginary frequency was found.
2.3.1. General procedure for the synthesis of (1)-(9). To a stirred solution of 2-nitrobenzoyl, 3-nitrobenzoyl and 4nitrobenzoyl phosphoramidic dichloride in dry acetonitrile $(20 \mathrm{ml})$, a solution of corresponding amine (diethyl amine, pyrrolidine or morpholine) was added dropwise at 268 K . After 8 h stirring, the product was filtered off and then washed with distilled water.
2.3.2. General procedure for the synthesis of (10)-(13). $\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ of commercial grade was used without further purification. $\mathrm{HC}(\mathrm{OEt})_{3}(0.5 \mathrm{ml}, 3 \mathrm{mmol})$ was added to a boiling solution of 0.5 mmol of lanthanide(III) nitrate in 7 ml of dry acetone. A solution of $0.384 \mathrm{~g}(1 \mathrm{mmol})$ of $4-\mathrm{NO}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}(9)$ in 10 ml of dry methanol was added. The solution was allowed to stand in a vacuum desiccator over CaCl_{2}. After 2 d monocrystals of (10) and (13) were precipitated, washed with cold chloroform and acetone, and dried in air. The complexes are stable in air, insoluble in common polar and nonpolar organic solvents.
2.3.3. $\quad N$-(2-Nitrobenzoyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetraethyl phosphorictriamide (1). Yield: 65%, m.p. $414 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.09\left[\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right]$, $3.13\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.63\left[\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 8.03\left[\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 9.20$ (br, $1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=13.98[\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{P}, \mathrm{C})=2.7 \mathrm{~Hz}\right], 39.38\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=5.2 \mathrm{~Hz}\right], 124.22(\mathrm{~s}), 128.57$ (s), $130.18(\mathrm{~s}), 133.16(\mathrm{~s}), 133.35\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=9.3 \mathrm{~Hz}\right], 146.57$ (s), 167.39 (s). ${ }^{31} \mathrm{P}$ NMR ($202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.26$ (s) p.p.m. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3030(\nu \mathrm{~N}-\mathrm{H}), 2855,1674(\nu \mathrm{C}=\mathrm{O})$, 1525, 1452, $1211(\nu \mathrm{P}=\mathrm{O}), 1178(\nu \mathrm{P}=\mathrm{O}), 1027,851(\nu \mathrm{P}-\mathrm{N})$, $820(\nu \mathrm{P}-\mathrm{N}), 727(\nu \mathrm{P}-\mathrm{N})$. Anal.: calc. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}$: C 50.6, H 7.0, N 15.7\%; found: C 50.4, H 7.3, N 15.9%.
2.3.4. $\quad N$-(3-Nitrobenzoyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetraethyl phosphorictriamide (2). Yield: 47%, m.p. $376 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.11\left[\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right]$, $3.13\left[\mathrm{~m},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right], 7.61\left[\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 8.35\left[\mathrm{dt},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz},{ }^{5} J(\mathrm{H}, \mathrm{H})=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ar-H], $8.57\left[\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 9.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ 10.31 (br, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.86$
$\left[\mathrm{d},{ }^{3} J(\mathrm{P}, \mathrm{C})=2.7 \mathrm{~Hz}\right], 39.46\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=5.2 \mathrm{~Hz}\right], 123.90(\mathrm{~s})$, 126.32 (s), 129.18 (s), 134.49 (s), 135.84 [d, ${ }^{3} J(\mathrm{P}, \mathrm{C})=9.5 \mathrm{~Hz}$], 148.43 (s), 166.27 (s). ${ }^{31} \mathrm{P}$ NMR ($202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $15.43(\mathrm{~m})$ p.p.m. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3030(\nu \mathrm{~N}-\mathrm{H}), 2855,1670$ $(\nu \mathrm{C}=\mathrm{O}), 1523,1444,1209(\nu \mathrm{P}=\mathrm{O}), 1178(\nu \mathrm{P}=\mathrm{O}), 1018,849$ $(\nu \mathrm{P}-\mathrm{N}), 809(\nu \mathrm{P}-\mathrm{N}), 716(\nu \mathrm{P}-\mathrm{N})$. Anal.: calc. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}: \mathrm{C} 50.6, \mathrm{H} 7.0, \mathrm{~N} 15.7 \%$; found: C 50.7, H 7.2, N 15.4\%.
2.3.5. $\quad N$-(4-Nitrobenzoyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetraethyl phosphorictriamide (3). Yield: 74%, m.p. $462 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.12\left[\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right]$, $3.19\left[\mathrm{~m},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right], 8.25\left[\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 8.38\left[\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 10.05(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.95\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=\right.$ $2.4 \mathrm{~Hz}], 39.55\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=5.2 \mathrm{~Hz}\right], 123.30(\mathrm{~s}), 129.76(\mathrm{~s})$, 139.43 [d, ${ }^{3} J(\mathrm{P}, \mathrm{C})=9.2 \mathrm{~Hz}$], $149.90(\mathrm{~s}), 166.50(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR $\left(202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.47(\mathrm{~m}) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3040$ ($\nu \mathrm{N}-\mathrm{H}), 2860,1663(\nu \mathrm{C}=\mathrm{O}), 1516,1433,1212(\nu \mathrm{P}=\mathrm{O})$, 1180, 1023, $838(\nu \mathrm{P}-\mathrm{N}), 816(\nu \mathrm{P}-\mathrm{N}), 718(\nu \mathrm{P}-\mathrm{N})$. Anal.: calc. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}$: C 50.6, H 7.0, N 15.7%; found: C 50.3, H 7.3, N 15.5\%.
2.3.6. $\quad N$-(2-Nitrobenzoyl)- $N^{\prime}, N^{\prime \prime}$-bis(pyrolidino)phosphoric triamide (4). Yield: 52%, m.p. $454 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.83\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.23(\mathrm{~m}, 4 \mathrm{H}$, CH_{2}), $3.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66\left[\mathrm{dt},{ }^{3} J(\mathrm{H}, \mathrm{H})\right.$ $\left.=7.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 8.03\left[\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $\left.8.1 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right], 8.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.33\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=8.3 \mathrm{~Hz}\right]$, $46.28\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=5.2 \mathrm{~Hz}\right], 124.36(\mathrm{~s}), 128.49(\mathrm{~s}), 130.48(\mathrm{~s})$, 133.09 [d, ${ }^{3} J(\mathrm{P}, \mathrm{C})=8.9 \mathrm{~Hz}$], 133.37 (s$), 146.59(\mathrm{~s}), 167.43$ [d, $\left.{ }^{2} J(\mathrm{P}, \mathrm{C})=3.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right] .{ }^{31} \mathrm{P}$ NMR $\left(202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 8.69 (s). IR (KBr, cm ${ }^{-1}$): $3040(\nu \mathrm{~N}-\mathrm{H}), 2935,1680(\nu \mathrm{C}=\mathrm{O})$, 1521, 1447, $1209(\nu \mathrm{P}=\mathrm{O}), 1177,1088,1013,857(\nu \mathrm{P}-\mathrm{N}), 823$ $(\nu \mathrm{P}-\mathrm{N}), 728(\nu \mathrm{P}-\mathrm{N})$. Anal.: calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}: \mathrm{C} 51.1, \mathrm{H}$ 6.0, N 15.9%; found: C 50.9 , H 6.3, N 15.6%.
2.3.7. $\quad N$-(3-Nitrobenzoyl)- $N^{\prime}, N^{\prime \prime}$-bis(pyrolidino)phosphoric triamide (5). Yield: 83%, m.p. $457 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.82(\mathrm{~m}, 8 \mathrm{H}), 3.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 7.62\left[\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 8.36$ $\left[\mathrm{dm},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 8.54[\mathrm{dt}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz},{ }^{5} J(\mathrm{P}, \mathrm{H})=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 9.24\left[\mathrm{t},{ }^{5} J(\mathrm{P}, \mathrm{H})\right.$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 10.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ (125.76 MHz, CDCl_{3}): $\delta=26.36\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=8.3 \mathrm{~Hz}\right], 46.37$ [d, $\left.{ }^{2} J(\mathrm{P}, \mathrm{C})=5.4 \mathrm{~Hz}\right], 123.90(\mathrm{~s}), 126.43$ (s), 129.27 (s), 134.55 (s), $135.62\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=9.2 \mathrm{~Hz}\right], 148.47(\mathrm{~s}), 166.15\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=\right.$ $2.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}] .{ }^{31} \mathrm{P}$ NMR ($202.45 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.79(\mathrm{~m})$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3080(\nu \mathrm{~N}-\mathrm{H}), 2935,1669(\nu \mathrm{C}=\mathrm{O}), 1520$, 1434, 1346, $1210(\nu \mathrm{P}=\mathrm{O}), 1178(\nu \mathrm{P}=\mathrm{O}), 1079$, $850(\nu \mathrm{P}-\mathrm{N})$, $818(\nu \mathrm{P}-\mathrm{N}), 703(\nu \mathrm{P}-\mathrm{N})$. Anal.: calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}$ 51.1, H 6.0, N 15.9\%; found: C 51.3, H 6.1, N 16.1%.
2.3.8. $\quad N$-(4-Nitrobenzoyl)- $N^{\prime}, N^{\prime \prime}$-bis(pyrolidino)phosphoric triamide (6). Yield: 87%, m.p. $497 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.83\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.22(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 8.25\left[\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right]$, $8.37\left[\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right], 8.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.35\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=8.3 \mathrm{~Hz}\right]$, $46.41\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=5.3 \mathrm{~Hz}\right], 123.36(\mathrm{~s}), 129.79(\mathrm{~s}), 139.20$ [d,
$\left.{ }^{3} J(\mathrm{P}, \mathrm{C})=8.8 \mathrm{~Hz}\right], 149.95(\mathrm{~s}), 166.45\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=2.0 \mathrm{~Hz}\right.$, $\mathrm{C}=\mathrm{O}] .{ }^{31} \mathrm{P}$ NMR ($202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.88$ (s). IR (KBr , $\left.\mathrm{cm}^{-1}\right): 3060(\nu \mathrm{~N}-\mathrm{H}), 2935,1672(\nu \mathrm{C}=\mathrm{O}), 1513,1448,1209$ $(\nu \mathrm{P}=\mathrm{O}), 1178,1075,1010,874(\nu \mathrm{P}-\mathrm{N}), 840(\nu \mathrm{P}-\mathrm{N}), 711$ $(\nu \mathrm{P}-\mathrm{N})$. Anal.: calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}: \mathrm{C} 51.1, \mathrm{H} 6.0, \mathrm{~N} 15.9 \%$; found: C 51.4, H 5.8, N 15.7%.
2.3.9. $\quad N$-(2-Nitrobenzoyl)- $N^{\prime}, N^{\prime \prime}$-bis(morpholino)phosphoric triamide (7). Yield: 58%, m.p. $526 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.19\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.62\left[\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $\left.4.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right], 7.53\left[\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 7.59\left[\mathrm{dt},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ar-H], $7.68\left[\mathrm{dt},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\right.$ $\mathrm{H}], 8.08\left[\mathrm{dd},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz},{ }^{5} J(\mathrm{P}, \mathrm{H})=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right]$, $9.56\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{H})=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right] .{ }^{13} \mathrm{C}$ NMR $(125.76 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=44.91\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=1.6 \mathrm{~Hz}\right], 67.09\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=\right.$ $4.9 \mathrm{~Hz}], 124.35(\mathrm{~s}), 128.68(\mathrm{~s}), 130.68(\mathrm{~s}), 132.73\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=\right.$ $10.2 \mathrm{~Hz}], 133.53$ (s), 146.39 (s), 167.70 (s). ${ }^{31} \mathrm{P}$ NMR $\left(202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.49(\mathrm{~m}) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3425$, $3045(\nu \mathrm{~N}-\mathrm{H}), 2935,1682(\nu \mathrm{C}=\mathrm{O}), 1521,1445,1355,1186$ $(\nu \mathrm{P}=\mathrm{O}), 1125,967,853(\nu \mathrm{P}-\mathrm{N}), 824(\nu \mathrm{P}-\mathrm{N}), 733(\nu \mathrm{P}-\mathrm{N})$. Anal.: calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}$: C 46.9, H 5.5, N 14.6%; found: C 47.1, H 5.7, N 14.5%.
2.3.10. N-(3-Nitrobenzoyl)- $N^{\prime}, N^{\prime \prime}$-bis(morpholino)phosphoric triamide (8). Yield: 76%, m.p. $482 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.34(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.66\left[\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.6 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right], 7.67\left[\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 8.41$ [ddd, ${ }^{3} J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=$ $\left.0.9 \mathrm{~Hz},{ }^{7} J(\mathrm{P}, \mathrm{H})=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 8.48\left[\mathrm{dt},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}\right.$, $\left.{ }^{5} J(\mathrm{P}, \mathrm{H})=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 9.43\left[\mathrm{t},{ }^{5} J(\mathrm{P}, \mathrm{H})=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\right.$ $\mathrm{H}], \quad 10.43\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{H})=4.5 \mathrm{~Hz}, \quad 1 \mathrm{H}, \mathrm{NH}\right] .{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ $\left(125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=45.17\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=1.6 \mathrm{~Hz}\right], 67.14[\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{P}, \mathrm{C})=5.0 \mathrm{~Hz}\right], 123.68(\mathrm{~s}), 127.02(\mathrm{~s}), 129.52(\mathrm{~s}), 134.69$ [d, $\left.{ }^{3} J(\mathrm{P}, \mathrm{C})=9.2 \mathrm{~Hz}\right], 134.91(\mathrm{~s}), 148.49(\mathrm{~s}), 166.10\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=\right.$ 2.6 Hz]. ${ }^{31} \mathrm{P}$ NMR ($202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.64$ (m). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3425,3065(\nu \mathrm{~N}-\mathrm{H}), 2940,1670(\nu \mathrm{C}=\mathrm{O}), 1520$, 1434, 1345, $1178(\nu \mathrm{P}=\mathrm{O}), 1130,967,862(\nu \mathrm{P}-\mathrm{N}), 821(\nu \mathrm{P}-$ $\mathrm{N}), 720(\nu \mathrm{P}-\mathrm{N})$. Anal.: calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}: \mathrm{C} 46.9$, H 5.5, N 14.6\%; found: C 46.7, H 5.4, N 14.8\%.
2.3.11. $\quad N$-(4-Nitrobenzoyl)- $N^{\prime}, N^{\prime \prime}$-bis(morpholino)phosphoric triamide (9). Yield: 87%, m.p. $510 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.30(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.32\left[\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=4.6 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right], 8.28\left[\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=\right.$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}], 8.32\left[\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 9.72$ $\left[\mathrm{d},{ }^{2} J(\mathrm{P}, \mathrm{H})=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right] .{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=45.14\left[\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{C})=1.5 \mathrm{~Hz}\right], 67.10\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=5.0 \mathrm{~Hz}\right]$, 123.58 (s), $129.68(\mathrm{~s}), 138.32$ [d, $\left.{ }^{3} J(\mathrm{P}, \mathrm{C})=9.1 \mathrm{~Hz}\right], 150.29(\mathrm{~s})$, 166.36 (s). ${ }^{31}$ P NMR ($202.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.73$ (m). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3430,3090(\nu \mathrm{~N}-\mathrm{H}), 2835,1672(\nu \mathrm{C}=\mathrm{O}), 1516$, 1441, 1347, $1196(\nu \mathrm{P}=\mathrm{O}), 1100,964,845(\nu \mathrm{P}-\mathrm{N}), 818(\nu \mathrm{P}-$ $\mathrm{N}), 722(\nu \mathrm{P}-\mathrm{N}) \mathrm{cm}^{-1}$. Anal.: calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}: \mathrm{C} 46.9, \mathrm{H}$ 5.5, N 14.6%; found: C 46.6, H 5.3, N 14.8%.
2.3.12. $\quad \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{CO}\left(\mathrm{CH}_{3}\right)_{2}\right)\left[\left(p-\mathrm{NO}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONH}-\right.$ $\mathbf{P O}\left(\mathrm{NC}_{\mathbf{4}} \mathbf{H}_{\mathbf{8}} \mathrm{O}\right)_{\mathbf{2}} \mathrm{J}_{\mathbf{2}}$ (10). Yield: 80%, m.p. $445 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, d_{6}$-DMSO): $\delta=3.36$ (br, $16 \mathrm{H}, \mathrm{CH}_{2}$), 3.54 (br, $\left.16 \mathrm{H}, \mathrm{CH}_{2}\right), 8.10\left[\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 8.29$ [d, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 9.66$ (s, 2H, NH). ${ }^{13} \mathrm{C}$ NMR $\left(125.76 \mathrm{MHz}, d_{6}\right.$-DMSO): $\delta=44.36(\mathrm{~s}), 66.34\left[\mathrm{~d},{ }^{3} J(\mathrm{P}, \mathrm{C})=\right.$

Table 1
Selected NMR data of (1)-(9).
$R^{1}=2-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NH}, R^{2}=3-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NH}, R^{3}=4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NH}, X^{1}=\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, X^{2}=$ $\mathrm{NC}_{4} \mathrm{H}_{8}, X^{3}=\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}$.

Series	No.	Compound	$\delta\left({ }^{31} \mathrm{P}\right)$ (p.p.m.)	$\delta\left({ }^{13} \mathrm{C}\right)_{\text {carbonyl }}$ $($ p.p.m. $)$	${ }^{2} J(\mathrm{P}, \mathrm{C})_{\text {aliphatic }}$ (Hz)	${ }^{3} J(\mathrm{P}, \mathrm{C})_{\text {aliphatic }}$ (Hz)	${ }^{3} J(\mathrm{P}, \mathrm{C})_{\text {aromatic }}$ (Hz)	CH_{2} pattern \dagger
S 1	(1)	$R^{1} \mathrm{P}(\mathrm{O})\left(X^{1}\right)_{2}$	14.26	167.39	5.2	2.7	9.3	m
	(2)	$R^{2} \mathrm{P}(\mathrm{O})\left(X^{1}\right)_{2}$	15.43	166.27	5.2	2.7	9.5	m
	(3)	$R^{3} \mathrm{P}(\mathrm{O})\left(X^{1}\right)_{2}$	15.47	166.50	5.2	2.4	9.2	m
S 2	(4)	$R^{1} \mathrm{P}(\mathrm{O})\left(X^{2}\right)_{2}$	8.69	167.43	5.2	8.3	8.9	2 m
	(5)	$R^{2} \mathrm{P}(\mathrm{O})\left(X^{2}\right)_{2}$	9.79	166.15	5.4	8.3	9.2	2 m
	(6)	$R^{3} \mathrm{P}(\mathrm{O})\left(X^{2}\right)_{2}$	9.88	166.45	5.3	8.3	8.8	2 m
S 3	(7)	$R^{1} \mathrm{P}(\mathrm{O})\left(X^{3}\right)_{2}$	10.49	167.70	1.6	4.9	10.2	m
	(8)	$R^{2} \mathrm{P}(\mathrm{O})\left(X^{3}\right)_{2}$	11.64	166.10	1.6	5.0	9.2	2 m
	(9)	$R^{3} \mathrm{P}(\mathrm{O})\left(X^{3}\right)_{2}$	11.73	166.36	1.5	5.0	9.1	2 m

\dagger The CH_{2} protons revealed one multiplet (m) or two multiplet (2 m) signals in ${ }^{1} \mathrm{H}$ NMR spectra.
(s), 130.61 (s), 151.77 (s). ${ }^{31} \mathrm{P}$ NMR ($202.46 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=7.04$ (br). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3345(\nu \mathrm{~N}-\mathrm{H})$, 2865, $1698(\nu \mathrm{C}=\mathrm{O}), 1525,1490$, 1468, 1345, 1253, $1162(\nu \mathrm{P}=\mathrm{O})$, 1107, $974,842(\nu \mathrm{P}-\mathrm{N}), 734(\nu \mathrm{P}-\mathrm{N})$, $709(\nu \mathrm{P}-\mathrm{N}) \mathrm{cm}^{-1}$.
2.3.14. $\quad \mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)[$ $(p-$ $\left.\left.\mathrm{NO}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONHPO}\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]_{2}$ (12). Yield: 75%, d.p. $437 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR ($500.13 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=$ $1.02\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 2.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}_{2}\right)$, $2.80\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 5.60(\mathrm{br}, 2 \mathrm{H}$, NH), 8.65 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.83 (s, 4H, Ar-H). ${ }^{13} \mathrm{C}$ NMR (125.76 MHz, $\mathrm{CD}_{3} \mathrm{CN}$): $\delta=43.43$ (s), 65.47 (s), 124.22 (s), 130.33 (s), 152.04 (s). ${ }^{31} \mathrm{P}$
$5.4 \mathrm{~Hz}], 123.31$ (s), 129.65 (s), 149.44 (s), 167.14 (s). ${ }^{31} \mathrm{P}$ NMR ($202.46 \mathrm{MHz}, d_{6}$-DMSO): $\delta=8.73$ (m). IR (KBr, cm^{-1}): 3325 $(\nu \mathrm{N}-\mathrm{H}), 2945,1692(\nu \mathrm{C}=\mathrm{O}), 1518,1443,1345,1155$ $(\nu \mathrm{P}=\mathrm{O}), 1104,969,841(\nu \mathrm{P}-\mathrm{N}), 811(\nu \mathrm{P}-\mathrm{N}), 729(\nu \mathrm{P}-\mathrm{N})$. Anal.: calc. for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{LaN}_{11} \mathrm{O}_{23} \mathrm{P}_{2}$: C 33.9, H 4.3, N 13.2; found: C 34.1, H 4.6, N 13.0\%.
2.3.13. $\quad \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\left[\left(p-\mathrm{NO}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONH}-\right.$ $\left.\mathbf{P O}\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]_{2}$ (11). Yield: 78%, d.p. $433 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR $\left(500.13 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=2.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}_{2}\right), 3.55(\mathrm{~s}, 16 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 7.95\left[\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right]$, $8.20\left[\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right], 9.28(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($125.76 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=46.11$ (s), 67.56 (s), 124.75

Figure 1
Preparation pathway for (1)-(9).

NMR (202.46 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) $\delta=-128.10$ (br). IR (KBr , $\left.\mathrm{cm}^{-1}\right): 3345(\nu \mathrm{~N}-\mathrm{H}), 2865,1699(\nu \mathrm{C}=\mathrm{O}), 1525,1491,1447$, 1344, 1296, 1249, $1162(\nu \mathrm{P}=\mathrm{O}), 1139,1105,973,917,853$ $(\nu \mathrm{P}-\mathrm{N}), 735(\nu \mathrm{P}-\mathrm{N}), 708(\nu \mathrm{P}-\mathrm{N}), 518,493 \mathrm{~cm}^{-1}$.
2.3.15. $\quad \operatorname{Er}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\left[\left(p-\mathrm{NO}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CONHPO}\left(\mathrm{NC}_{4}-\right.\right.$ $\left.\left.\mathbf{H}_{8} \mathrm{O}\right)_{2}\right]_{2}$ (13). Yield: 83%, m.p. $458 \mathrm{~K} .{ }^{1} \mathrm{H} \quad \mathrm{NMR}$ ($500.13 \mathrm{MHz}, d_{6}$-DMSO): $\delta=0.50-7.40(\mathrm{br}), 8.50-13.50(\mathrm{br})$. ${ }^{31} \mathrm{P}$ NMR (202.46 MHz, d_{6}-DMSO): $\delta=8.41$ (br). IR (KBr , $\left.\mathrm{cm}^{-1}\right): 3330(\nu \mathrm{~N}-\mathrm{H}), 2950,1687(\nu \mathrm{C}=\mathrm{O}), 1515,1442,1347$, 1301, 1256, $1155(\nu \mathrm{P}=\mathrm{O}), 1099,970,842(\nu \mathrm{P}-\mathrm{N}), 733(\nu \mathrm{P}-$ $\mathrm{N}), 704(\nu \mathrm{P}-\mathrm{N}), 492 \mathrm{~cm}^{-1}$. Anal.: calc. for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{ErN}_{11} \mathrm{O}_{22} \mathrm{P}_{2}$: C 31.6, H 3.9, N 13.5; found: C 31.4, H 4.1, N 13.3\%.

3. Results and discussion

3.1. Spectroscopic study

The new phosphoric triamides (1)-(9) (Fig. 1) and four lanthanide(III) complexes of N-(4-nitrobenzoyl)- $N^{\prime}, N^{\prime \prime}$ bis(morpholino) phosphoric triamide (10)-(13) (Fig. 2) were prepared. All the compounds contain two identical secondary amine groups connected to the P atom. Compounds (1)-(9) can be split into three series, S1, S2 and S3, according to the type of secondary amine group, see Fig. 1. Selected spectroscopic data of these compounds are listed in Table 1.

Compounds $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 contain a $-\mathrm{P}-\mathrm{N}-\mathrm{CH}_{2}-$ skeleton, in which these protons are diastrotopic. In the S1type molecules, containing acyclic aliphatic amines, the rotation around the $\mathrm{P}-\mathrm{N}$ bond is fast and the CH_{2} protons revealed one multiplet signal in ${ }^{1} \mathrm{H}$ NMR spectra. On the

$$
\begin{array}{cc}
\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3}+2 \mathrm{HL} \frac{\text { aceton }}{\text { methanO }} \mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{Sof})[\mathrm{HL}]_{2} & \mathrm{Ln}=\mathrm{La}(10) \\
\mathrm{Sm}(11) \\
\mathrm{HL}=\left(\mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O}) \mathrm{NHP}(\mathrm{O})\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right]_{2} & \operatorname{En}(12) \\
& \mathrm{Er}(13)
\end{array}
$$

Figure 2
Preparation pathway for (10)-(13).

Table 2
Crystallographic data for (3) and (5).
Experiments were carried out with Mo $K \alpha$ radiation.

	(3)	(5)
Crystal data		
Chemical formula	$\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}$	$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}$
M_{r}	356.36	352.3
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$	Triclinic, $P \overline{1}$
Temperature (K)	120	120
a, b, c (A$)$	9.9548 (8), 20.3681 (16), 8.8471 (7)	9.1631 (2), 9.3224 (2), 11.4353 (3)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 96.125 (2), 90	109.909 (2), 110.445 (2), 96.024 (2)
$V\left(\mathrm{~A}^{3}\right)$	1783.6 (2)	832.33 (4)
Z	4	2
$\mu\left(\mathrm{mm}^{-1}\right)$	0.18	0.19
Crystal size (mm)	$0.30 \times 0.26 \times 0.22$	$0.98 \times 0.36 \times 0.22$
Data collection		
Diffractometer	Bruker SMART 1000 CCD area detector	Oxford Diffraction CCD
Absorption correction	Multi-scan SADABS	Multi-scan CrysAlis
$T_{\text {min }}, T_{\text {max }}$	0.945, 0.963	0.942, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	16 991, 3882, 2498	10 200, 3460, 2983
$R_{\text {int }}$	0.055	0.016
Completeness (\%)	99.6	98.1
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.056, 0.123, 1.09	0.035, 0.096, 3.18
No. of reflections	3882	3460
No. of parameters	221	225
No. of restraints	0	0
H -atom treatment	H -atom parameters constrained	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.37, -0.29	$0.49,-0.44$

Computer programs used: SMART (Bruker, 1998b), CrysAlis CCD (Oxford Diffraction, 2007b), X-AREA, X-RED (Stoe \& Cie, 2006), SAINT-Plus (Bruker, 1998a), CrysAlis RED (Oxford Diffraction, 2007a), SHELXTL, SHELXS97, SHELXS 97 (Sheldrick, 2008), SUPERFLIP (Palatinus \& Chapuis, 2007), JANA2006 (Petricek et al., 2006), DIAMOND (Brandenburg \& Putz, 2005), ORTEP3 (Farrugia, 1997), PLATON (Spek, 2009).
other hand, the slow $\mathrm{P}-\mathrm{N}$ rotation and inflexible ring inversion in compounds of S2 type containing five-membered ring amines, is confirmed by the existence of two separated multiple signals for the endocyclic CH_{2} protons. These protons are diastereotopic, coupled with each other, their corresponding P atoms and their neighboring protons. In compounds containing flexible cyclic amine groups (S3) the two separated signals are coalesced [in (7)] or adjacent [in (8) and (9)] to each other. Therefore, the $\mathrm{P}-\mathrm{N}_{\text {amine }}$ rotation and ring inversion affect the coupling patterns of diastereotopic methylene protons in ${ }^{1} \mathrm{H}$ NMR spectra (Gholivand, Mostaanzadeh et al., 2006).

Owing to the presence of paramagnetic cations $\left(\mathrm{Eu}^{3+}\right.$ and Er^{3+}) the ${ }^{1} \mathrm{H}$ NMR spectra of complexes (12) and (13) show broadened signals for all the aliphatic and aromatic protons. Surprisingly, in (13) the width of two observed signals is approximately 6 p.p.m.

The ${ }^{13}$ C NMR of compounds S2 and S3, which contain cyclic amine groups, show that ${ }^{3} J\left(\mathrm{P}, \mathrm{C}_{\text {amine }}\right)>{ }^{2} J\left(\mathrm{P}, \mathrm{C}_{\text {amine }}\right)$, but in compounds containing an acyclic amine (S1) ${ }^{2} J\left(\mathrm{P}, \mathrm{C}_{\text {amine }}\right) ~>$ ${ }^{3} J\left(\mathrm{P}, \mathrm{C}_{\text {amine }}\right)$. The rotation around the $\mathrm{C}-\mathrm{N}_{\text {amine }}$ bond in molecules of type S 1 changes the $\angle \mathrm{PNCC}$ dihedral angles (the average of \angle PNCC dihedral angle values are near to 90°) and it causes the decrease in ${ }^{3} J\left(\mathrm{P}, \mathrm{C}_{\text {amine }}\right)$ values of these
compounds. Compounds of the type S 2 and S 3 do not show any $\mathrm{C}-\mathrm{N}_{\text {amine }}$ bond rotation, therefore the \angle PNCC dihedral angle values are approximately 180°, and considering the Karplus relationship (Karplus, 1963) it confirms the high values of ${ }^{3} J\left(\mathrm{P}, \mathrm{C}_{\text {amine }}\right)$. As shown in Table 1, with increasing the ring size of the amine groups in S2 and S3 compounds, the ${ }^{3} J\left(\mathrm{P}, \mathrm{C}_{\text {amine }}\right)$ becomes smaller reaching about 8.3 and 4.9 Hz in compounds containing five- and six-membered ring amine groups, respectively. This is in agreement with the reported results in the similar phosphoric triamides (Gholivand, Shariatinia \& Pourayoubi, 2006). The lowest ${ }^{2} J\left(\mathrm{P}, \mathrm{C}_{\text {amine }}\right)$ is related to compounds S3, probably due to the distance between the P and C atoms and the \angle PNC bond angle. The lowest ${ }^{3} J\left(\mathrm{P}, \mathrm{C}_{\text {amide }}\right)$ in each series of the analogous compounds $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 is observed for the 4- $\mathrm{NO}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})(X)_{2}$ formula.
${ }^{31} \mathrm{P}$ NMR indicates that $\delta\left({ }^{31} \mathrm{P}\right)$ in compounds S 1 (containing acyclic amine groups) is higher than in those of compounds S2 and S3 (containing cyclic amine groups), and also with increasing the ring size of amine groups it shifts to down field. In each series of analogous compounds $R \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})(X)_{2}$: ($\mathrm{S} 1-$ S3), the $\delta\left({ }^{31} \mathrm{P}\right)$ and $\delta\left({ }^{13} \mathrm{C}=\mathrm{O}\right)$ values are decreased as $R=4$ -$\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}>3-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}>2-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$ and $2-\mathrm{NO}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{4}>4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}>3-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$, respectively.

Owing to the presence of paramagnetic cations $\left(\mathrm{Sm}^{3+}, \mathrm{Eu}^{3+}\right.$ and Er^{3+}) the ${ }^{31} \mathrm{P}$ NMR spectra of complexes (11)-(13) show broadened signals. In (12) this signal shifts to unexpected high fields $\left[\delta\left({ }^{31} \mathrm{P}\right)=-128.10\right.$ p.p.m.].

The IR spectra of compounds S1 and S2 show the presence of characteristic vibrational modes for chemical groups in the molecule (Gholivand et al., 2007). The high frequency range with strong absorptions at typically $c a 3030 \mathrm{~cm}^{-1}$ can be assigned with confidence to the $\nu(\mathrm{N}-\mathrm{H})$ stretching of the $-\mathrm{C}(\mathrm{O}) \mathrm{NH}-$ moiety. It is interesting to note that in each series of $\mathrm{S} 1-\mathrm{S} 3$ compounds, the $\nu(\mathrm{N}-\mathrm{H})$ frequencies of the 4 nitrobenzoyl substitute molecules have the highest values, reaching $3090 \mathrm{~cm}^{-1}$ in (9). Strong intensity bands appear in the spectra at frequency values of $c a 1590$ and $1350 \mathrm{~cm}^{-1}$, characteristic for the antisymmetric and symmetric stretching modes of the nitro group, respectively. The $\mathrm{C}=\mathrm{O}$ frequencies in all phosphoramidates (1)-(9) are in the range 1669 [(3), (5)] to $1682 \mathrm{~cm}^{-1}$. The $\mathrm{P}=\mathrm{O}$ frequency values in S 1 and S 2 compounds are very close to each other, with typical values around $1210 \mathrm{~cm}^{-1}$. Other characteristic fundamentals for

Table 3
Crystallographic data for (9), (10) and (13).
Experiments were carried out with Mo $K \alpha$ radiation.

	(9)	(10)	(13)
Crystal data			
Chemical formula	$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}$	$\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{LaN}_{11} \mathrm{O}_{23} \mathrm{P}_{2}$	$\begin{gathered} \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{ErN}_{11} \mathrm{O}_{22} \mathrm{P}_{2} \cdot 0.5- \\ 0.5 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \cdot 0.5 \mathrm{CH}_{4} \mathrm{O} \end{gathered}$
M_{r}	384.33	1169.7	1185.02
Crystal system, space group	Monoclinic, $P 2_{1} / c$	Monoclinic, $P 2_{1} / n$	Monoclinic, $P 2_{1} / n$
Temperature (K)	120	100	173
$a, b, c(\AA)$	16.2973 (12), 11.1318 (8), 9.4354 (7)	8.8631 (10), 33.466 (4), 15.5399 (18)	8.7152 (4), 33.5889 (14), 15.3815 (8)
$\beta\left({ }^{\circ}\right)$	94.881 (2)	93.195 (3)	92.113 (4)
$a, b, c(\AA)$	16.2973 (12), 11.1318 (8), 9.4354 (7)	8.8631 (10), 33.466 (4), 15.5399 (18)	8.7152 (4), 33.5889 (14), 15.3815 (8)
$\beta\left({ }^{\circ}\right.$)	94.881 (2)	93.195 (3)	92.113 (4)
$V\left(\mathrm{~A}^{3}\right)$	1705.5 (2)	4602.2 (9)	4499.6 (4)
Z	4	4	4
$\mu\left(\mathrm{mm}^{-1}\right)$	0.20	1.10	2.03
Crystal size (mm)	$0.28 \times 0.26 \times 0.18$	$0.47 \times 0.33 \times 0.20$	$0.33 \times 0.27 \times 0.21$
Data collection			
Diffractometer	Bruker SMART 1000 CCD area detector	Bruker SMART 1000 CCD area detector	STOE IPDS2
Absorption correction	Multi-scan SADABS	Multi-scan SADABS	Multi-scan MULscanABS
$T_{\text {min }}, T_{\text {max }}$	$0.941,0.968$	$0.657,0.801$	0.607, 0.657
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	19 538, 4958, 3709	54 317, 12 056, 9147	42 064, 8492, 6850
$R_{\text {int }}$	0.032	0.087	0.045
Completeness (\%)	99.6	98.7	99.2
Refinement			
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.049, 0.126, 1.05	0.055, 0.112, 1.01	0.042, 0.109, 1.03
No. of reflections	4958	12056	8492
No. of parameters	247	687	590
No. of restraints	11	0	5
H -atom treatment	H -atom parameters constrained	H -atom parameters constrained	Mixture of independent and constrained
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.45, -0.41	1.32, -1.44	2.07, -1.59

carbacylamidophosphate species are the $\mathrm{N}-\mathrm{P}$ stretching modes, typically observed at frequency values slightly lower than $850 \mathrm{~cm}^{-1}$. These values are in good agreement with the reported vibrational data for related compounds (Iriarte et al., 2008).

The IR spectra of the coordination compounds (10)-(13) reveal a significantly lower frequency of $v(\mathrm{P}=\mathrm{O})$ compared with the data for the free ligand (9) $\left[\Delta v(\mathrm{P}=\mathrm{O})=34-41 \mathrm{~cm}^{-1}\right]$, reflecting the coordination through the phosphoryl O atom
(Gubina, Shatrava et al., 2000; Trush et al., 1999). For the $\nu(\mathrm{C}=\mathrm{O})$ value an opposite result was obtained [1687$1699 \mathrm{~cm}^{-1}$ in complexes and $1672 \mathrm{~cm}^{-1}$ in (9)]. The absorption band in the IR spectrum of the free ligand (9) at $3090 \mathrm{~cm}^{-1}$ can be assigned to the vibrations of the NH group connected to a phosphoryl group of a neighboring molecule by a strong hydrogen bond (Gubina, Shatrava et al., 2000; Amirkhanov, Ovchynnikov et al., 1997). By coordination to the lanthanide

Figure 4
Molecular structure of (5), 3- $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NHP}(\mathrm{O})\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{2}$, showing 50% probability displacement ellipsoids. H atoms are omitted for the sake of clarity.

Table 4
Selected bond lengths (\AA) and angles (${ }^{\circ}$) for (3), (5) and (9).

(3)		(5)		(9)	
$\mathrm{P} 1-\mathrm{O} 1$	$1.486(6)$	$\mathrm{P} 1-\mathrm{O} 4$	$1.4840(14)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.4811(12)$
$\mathrm{P} 1-\mathrm{N} 2$	$1.637(2)$	$\mathrm{P} 1-\mathrm{N} 4$	$1.6268(16)$	$\mathrm{P} 1-\mathrm{N} 2$	$1.6251(15)$
$\mathrm{P} 1-\mathrm{N} 1$	$1.693(2)$	$\mathrm{P} 1-\mathrm{N} 3$	$1.6351(10)$	$\mathrm{P} 1-\mathrm{N} 1$	$1.6443(15)$
$\mathrm{P} 1-\mathrm{N} 3$	$1.632(2)$	$\mathrm{P} 1-\mathrm{N} 2$	$1.6954(14)$	$\mathrm{P} 1-\mathrm{N} 3$	$1.6875(14)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.221(3)$	$\mathrm{O} 3-\mathrm{C} 7$	$1.223(2)$	$\mathrm{O} 4-\mathrm{C} 9$	$1.220(2)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.370(3)$	$\mathrm{N} 4-\mathrm{C} 15$	$1.478(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.470(2)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.475(3)$	$\mathrm{N} 4-\mathrm{C} 12$	$1.4747(18)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.471(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.479(3)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.480(2)$	$\mathrm{N} 2-\mathrm{C} 5 A$	$1.4573(18)$
$\mathrm{N} 3-\mathrm{C} 7$	$1.461(3)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.485(2)$	$\mathrm{N} 2-\mathrm{C} 8 B$	$1.472(3)$
$\mathrm{N} 3-\mathrm{C} 5$	$1.469(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.373(2)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.377(2)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 2$	$109.75(10)$	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{N} 4$	$110.38(7)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 2$	$115.72(8)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 1$	$105.43(10)$	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{N} 3$	$118.96(7)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 1$	$109.59(7)$
$\mathrm{N} 2-\mathrm{P} 1-\mathrm{N} 1$	$112.16(10)$	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{N} 2$	$105.02(7)$	$\mathrm{N} 2-\mathrm{P} 1-\mathrm{N} 1$	$105.78(8)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 3$	$116.39(11)$	$\mathrm{N} 4-\mathrm{P} 1-\mathrm{N} 3$	$104.98(7)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 3$	$112.74(7)$
$\mathrm{N} 2-\mathrm{P} 1-\mathrm{N} 3$	$107.62(11)$	$\mathrm{N} 4-\mathrm{P} 1-\mathrm{N} 2$	$114.44(7)$	$\mathrm{N} 2-\mathrm{P} 1-\mathrm{N} 3$	$105.41(7)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{N} 3$	$105.49(10)$	$\mathrm{N} 3-\mathrm{P} 1-\mathrm{N} 2$	$103.24(6)$	$\mathrm{N} 1-\mathrm{P} 1-\mathrm{N} 3$	$107.03(7)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{P} 1$	$125.78(17)$	$\mathrm{P} 1-\mathrm{N} 4-\mathrm{C} 15$	$128.41(10)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{P} 1$	$119.16(11)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{P} 1$	$118.66(16)$	$\mathrm{P} 1-\mathrm{N} 4-\mathrm{C} 12$	$122.38(13)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{P} 1$	$123.18(12)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{P} 1$	$124.17(17)$	$\mathrm{C} 15-\mathrm{N} 4-\mathrm{C} 12$	$109.19(14)$	$\mathrm{C} 5 A-\mathrm{N} 2-\mathrm{P} 1$	$128.95(11)$
$\mathrm{C} 7-\mathrm{N} 3-\mathrm{P} 1$	$125.28(17)$	$\mathrm{P} 1-\mathrm{N} 3-\mathrm{C} 8$	$124.07(11)$	$\mathrm{C} 8 B-\mathrm{N} 2-\mathrm{P} 1$	$122.4(3)$
$\mathrm{C} 5-\mathrm{N} 3-\mathrm{P} 1$	$117.79(18)$	$\mathrm{P} 1-\mathrm{N} 3-\mathrm{C} 11$	$121.00(11)$	$\mathrm{C} 8 A-\mathrm{N} 2-\mathrm{P} 1$	$115.6(2)$
$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 7$	$116.9(2)$	$\mathrm{P} 1-\mathrm{N} 2-\mathrm{C} 7$	$124.81(12)$	$\mathrm{C} 9-\mathrm{N} 3-\mathrm{P} 1$	$121.00(11)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 9-\mathrm{O} 2$	$163.5(8)$	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{C} 7-\mathrm{O} 3$	$167.6(1)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 9-\mathrm{O} 4$	$-51.0(5)$
$\mathrm{P} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$-83.9(2)$	$\mathrm{P} 1-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 9$	$167.8(5)$	$\mathrm{P} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$151.8(9)$
$\mathrm{P} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-121.2(2)$	$\mathrm{P} 1-\mathrm{N} 3-\mathrm{C} 11-\mathrm{C} 10$	$144.1(0)$	$\mathrm{P} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$-152.3(4)$
$\mathrm{P} 1-\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 6$	$119.7(2)$	$\mathrm{P} 1-\mathrm{N} 4-\mathrm{C} 12-\mathrm{C} 13 a$	$175.1(2)$	$\mathrm{P} 1-\mathrm{N} 3-\mathrm{C} 9-\mathrm{O} 4$	$-3.0(8)$
$\mathrm{P} 1-\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 8$	$-81.2(3)$	$\mathrm{P} 1-\mathrm{N} 4-\mathrm{C} 15-\mathrm{C} 14 a$	-146.91	$\mathrm{P} 1-\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 10$	$176.9(3)$

interesting to note that the onset at 449 K of the major weight loss is very near the melting point of (10). The TGA of (13) reveals a weight loss up to 373 K owing to the presence of lattice solvent (acetone and methanol) in the solid. The endothermic stage elimination of water molecules is observed at 418 K . Two exothermic stages (at 447 and 554 K) correspond to the decomposition of the complex. The thermal analysis of (11) and (12) is similar to (13).

3.2. X-ray crystallography

Single crystals of (3), (5) and (9) were obtained from a solution of chloroform and acetonitrile (with ratio 4/1) at room temperature. The crystallographic data and the details of the X-ray analysis of (3), (5), (9), (10) and (13) are given in Tables 2 and 3, selected bond lengths and angles in Tables 4 and 5. Molecular structures of these compounds are shown in Figs. 3-7. Compounds (3), (5) and (9) consist of isolated molecules, each of them being composed of two amine groups and a nitrobenzoyl group
ions, the $\mathrm{P}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ intermolecular hydrogen bonds are broken and the frequencyies $v(\mathrm{~N}-\mathrm{H})$ of complexes are detected at higher frequencies, in the $3325-3345 \mathrm{~cm}^{-1}$ range.

According to the TGA and DTA data the lanthanum complex (10) is stable up to 373 K . The endothermic two-stage elimination of acetone and water molecules is observed at 385 and 413 K , respectively. Two exothermic stages (at 449 and 552 K) correspond to the decomposition of the complex. It is

Figure 5
Molecular structure of (9), $4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NHP}(\mathrm{O})\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$, showing 50% probability displacement ellipsoids.
bonded to P via N atoms. These compounds contain one amidic H atom and form centrosymmetric dimers [in (3) and (5)] and polymeric chains [in (9)] via intermolecular $\mathrm{P}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds (Table 6, Figs. 8 and 9). In

Figure 6
Molecular structure of (10), $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]\left[4-\mathrm{NO}_{2}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]_{2}$, showing 50% probability displacement ellipsoids.

Table 5
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for (10) and (13).

(10)	(13)		
La1-O10	2.402 (3)	Er1-O1	2.275 (3)
La1-O16	2.432 (3)	Er1-O7	2.249 (3)
La1-O1W	2.489 (3)	Er1-O1W	2.313 (4)
La1-O4	2.786 (3)	Er1-O13	2.445 (4)
La1-O7	2.608 (3)	Er1-O14	2.430 (4)
La1-O2	2.611 (3)	Er1-O16	2.487 (3)
La1-O8	2.623 (3)	Er1-O17	2.444 (4)
La1-O1	2.640 (3)	Er1-O19	2.383 (4)
La1-O5	2.642 (3)	Er1-O20	2.456 (6)
La1-O1S	2.605 (3)	P2-N5	1.684 (5)
P1-O10	1.493 (3)	P1-O1	1.493 (3)
P2-O16	1.489 (3)	P2-O7	1.491 (3)
P1-N7	1.618 (3)	$\mathrm{P} 1-\mathrm{N} 1$	1.677 (4)
O10-La1-O16	148.98 (10)	$\mathrm{O} 1-\mathrm{Er} 1-\mathrm{O} 7$	151.50 (13)
O10-La1-O1 W	82.42 (10)	$\mathrm{O} 1-\mathrm{Er} 1-\mathrm{O} 1 W$	80.46 (12)
O16-La1-O1W	77.39 (10)	$\mathrm{O} 7-\mathrm{Er} 1-\mathrm{O} 1 W$	92.58 (12)
O10-La1-O1S	73.39 (10)	$\mathrm{O} 1-\mathrm{Er} 1-\mathrm{O} 13$	126.89 (11)
O16-La1-O1S	78.90 (10)	O1-Er1-O14	80.24 (11)
O1W-La1-O1S	75.62 (10)	O1-Er1-O16	74.38 (11)
O10-La1-O7	126.71 (10)	O1-Er1-O17	125.38 (12)
O16-La1-O7	81.77 (10)	O1-Er1-O19	83.98 (11)
O1 W-La1-O7	144.20 (11)	O7-Er1-O13	75.51 (12)
O1S-La1-O7	128.23 (10)	O7-Er1-O14	126.64 (12)
O10-La1-O2	116.93 (10)	O7-Er1-O16	119.82 (12)
O16-La1-O2	81.24 (9)	O7-Er1-O17	75.36 (12)
$\mathrm{O} 1 W-\mathrm{La} 1-\mathrm{O} 2$	77.11 (10)	$\mathrm{O} 7-\mathrm{Er} 1-\mathrm{O} 19$	79.77 (12)

contrast to all the similar phosphoro-azo compounds reported previously, the $\mathrm{P}=\mathrm{O} \cdots \mathrm{H}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds have an anti orientation in (9) and the molecules are connected to each other via one hydrogen bond, see Fig. 9. It is worth mentioning that the N-benzoyl phosphoric triamides studied previously were found either in the form of dimeric aggregates (Gholivand et al., 2005) or as polymeric chains (Gholivand, Mostaanzadeh et al., 2006).

Phosphoro-azo derivatives of β-diketones can create different types of complexes (bidentate and monodentate) with a lanthanide ion. The complexation of (9) with lanthanum and erbium nitrate produced both a ten- and a ninefold coordination complex, (10) and (13), respectively, with two equal monodentate phosphoramidate ligands. This behavior contrasts with the coordination showed in neodymium complexes with the trichloracetylphosphortriamide ligands, where the deprotonated form of the ligand acts in a bidentate

(a)

(b)

Figure 7
(a) Molecular structure of (13), $\mathrm{Er}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\left[4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})\left(\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]_{2}$, showing 50% probability displacement ellipsoids; (b) polyhedra of (13).

Table 6
Hydrogen bonds $D-\mathrm{H} \cdots A$ for (3), (5), (9), (10) and (13) (\AA, ${ }^{\circ}$).

	$D-\mathrm{H} \cdots A$	$d(D-H)$	$d(\mathrm{H} \cdots A)$	$d(D \cdots A)$	$\angle D \mathrm{H} A$
(3)	$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	0.870	1.920	2.789 (3)	177.0
(5)	$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{O} 4^{\text {ii }}$	0.87	2.00	2.856	165.7
(9)	$\mathrm{N} 3-\mathrm{H} 3 N \cdots \mathrm{O} 1^{\text {iii }}$	0.87	1.96	2.820 (5)	172.0
(10)	$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 19^{\text {iv }}$	0.890	1.943	2.810 (7)	164
	$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O}^{\text {d }}$	0.890	2.024	2.815 (6)	147
	N5-H5N.. $\mathrm{O}^{\text {vi }}$	0.850	2.195	2.988 (5)	155
	$\mathrm{N} 9-\mathrm{H} 9 \mathrm{~N} \cdots \mathrm{O} 4^{\text {vi }}$	0.850	2.163	2.948 (5)	153
(13)	$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O}{ }^{\text {vii }}$	0.84 (5)	1.93 (5)	2.753 (5)	169 (7)
	$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 11^{\text {viii }}$	0.84 (5)	2.01 (5)	2.807 (5)	158 (6)
	$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 16^{\text {vi }}$	0.86 (3)	2.11 (3)	2.887 (6)	150 (3)
	$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 19^{\mathrm{vi}}$	0.86 (3)	2.53 (3)	3.184 (6)	134 (3)

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x, 2-y, 2-z$; (iii) $x,-y-\frac{1}{2}, z-\frac{1}{2}$; (iv) $x-\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2} ;$ (v) $x-\frac{1}{2},-y-\frac{1}{2}, z+\frac{1}{2}$; (vi) x, y, z; (vii) $-1+x, y, z$; (viii) $-\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z$.
manner via the O atoms of the phosphoryl and the carbonyl groups (Znovjyak et al., 2009). In (10) the coordination sphere of the La^{3+} ion is a decatetrahedron (Fig. 6) comprising two $\mathrm{P}=\mathrm{O}$ groups, acetone, water and three bidentate nitrate groups. Fig. 7 shows that the coordination sphere of the Er^{3+} ion in (13) is a tricapped trigonal prism. In both complexes one of the nitrate groups also participates in an intramolecular hydrogen bond to the $\mathrm{N}-\mathrm{H}$ moiety of the phosphoramidate ligands. The nitrate groups symmetrically coordinate the central atom, therefore, the coordination polyhedron of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right][(9)]_{2}$ and $\mathrm{Er}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)[(9)]_{2}$ can be described as a distorted pseudo-pentagonal bipyramidal and pseudo-octahedron, respectively, provided that

Figure 8
A view of the crystal structure of (5), in which the hydrogen bonds produced centrosymmetric dimmers.

Figure 9
A view of part of the crystal structure of (9) in which the intermolecular hydrogen bond produced the one-dimensional polymeric chain.
each nitrate group occupies one site (the midpoint of the line connecting the coordinated O atoms of the nitrate group) in the coordination polyhedron. In the configuration of (10) the three nitrate groups, water and acetone occupy five equatorial positions with average bond angle of 72°, and the two phosphoramidate ligands are nearly in apical positions with bond angles of 149°. In the configuration of (13) the three nitrate groups and water occupy four equatorial positions with the average bond angle of 90°, and the two phosphoramidate ligands are nearly in apical positions with bond angles of 151.5°. In the planar four-membered rings of $\mathrm{LnO}_{2} \mathrm{~N}$ chelate, the average LaON angle is 97 and 95°, and the average $\mathrm{Ln}-\mathrm{O}$ bond length for the nitrate groups is 2.651 and $2.441 \AA$, in (10) and (13), respectively. In the crystal structures of both complexes intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds lead to the formation of two-dimensional polymeric chains (Table 6).

Amongst all known phosphoramidate compounds, the free ligand (9) is the first example in which the $-(\mathrm{O}) \mathrm{C}-\mathrm{NH}-$ $\mathrm{P}(\mathrm{O})$ - skeleton has the cisoid conformation (the dihedral angle $\angle \mathrm{OPCO}$ is -51.05°). It is interesting that in complexes of the same ligand the $(\mathrm{O}) \mathrm{CNP}(\mathrm{O})$ skeleton has the anti conformation [the average of two dihedral angles \angle OPCO is -177.09° in (10) and -170.76° in (13)]. The individual intermolecular hydrogen bonds in the crystal of the free ligand (9) may be the cause of a unique dihedral angle $\angle \mathrm{OPCO}(\mathrm{C}=\mathrm{O}$ and $\mathrm{P}=\mathrm{O}$ double bonds in the cisoid position with respect to each other), see Fig. 8. On the other hand, in (3) and (5) the $\mathrm{P}(\mathrm{O})$ and $\mathrm{C}(\mathrm{O})$ groups are in an anti position with respect to each other, following the usual behavior found for other phosphoro-azo derivatives of β-diketones (Corbridge, 1995). The coordination environment of phosphorus is nearly tetrahedral, with the bond angles ranging from 103.1 (10) to $118.9(5)^{\circ}$, for angles $\mathrm{O} 10-\mathrm{P} 1-\mathrm{N} 5$ and $\mathrm{O} 4-\mathrm{P} 1-\mathrm{N} 3$, respectively. In these compounds, the $\mathrm{P}-\mathrm{N}_{\text {amide }}$ bond lengths [$\mathrm{N}_{\text {amide }}$ is the N atom of the $\mathrm{P}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O})$ moiety] are longer than the $\mathrm{P}-\mathrm{N}_{\text {amine }}$ bond lengths [$\mathrm{N}_{\text {amine }}$ is the N atom of the $\mathrm{P}(\mathrm{O}) \mathrm{N} R$ moiety], because of the electrostatic interaction of the $\mathrm{N}_{\text {amide }}$ lone pair with the $\mathrm{C}=\mathrm{O} \pi^{*}$ system that causes a partial multiple bond character in $\mathrm{C}-\mathrm{N}_{\text {amide }}$ (the $\mathrm{C}-$ $\mathrm{N}_{\text {amide }}$ bond length is shorter than the $\mathrm{C}-\mathrm{N}_{\text {amine }}$ bond lengths). All of these bonds are shorter than the typical $\mathrm{P}-\mathrm{N}$ single bond ($1.77 \AA$ for $\mathrm{NaHPO}_{3} \mathrm{NH}_{2}$; Corbridge, 1995). The shortening may be related to an electrostatic effect (polar bond), which overlaps with the $\mathrm{P}-\mathrm{N} \sigma$ bond (Gilheany, 1994). The $\mathrm{P}=\mathrm{O}$ bond lengths in (3), (5), (9), (10) and (13) are 1.487 (6), 1.484 (1), 1.481 (1), [1.489 (3), 1.493 (3)] and [1.491 (3), 1.493 (3)] Å, respectively, and are slightly longer than the normal $\mathrm{P}=\mathrm{O}$ bond length $\left(1.45 \AA\right.$ for POCl_{3}; Corbridge, 1995). The $\mathrm{P}=\mathrm{O}$ bond lengths in complexes (10) and (13) are larger than those in the corresponding ligand (9), but the $\mathrm{C}=\mathrm{O}$ and $\mathrm{P}-\mathrm{N}_{\text {amine }}$ bond lengths show an opposite result, Table 5. The sum of the angles around the N atoms in phosphoramidates are close to $360^{\circ}\left(s p^{2}\right.$-hybridization), which is caused by the delocalization of the lone pair of electrons of the nitrogen. This fact and the decrease in $\mathrm{P}-\mathrm{N}_{\text {amine }}$ distances in the coordinated ligand (10) and (13) compared with the free ligand (9) (ca $1.62 \AA$ in the complexes, versus ca $1.63 \AA$ in the
free ligand) can be explained by an increase in the electrostatic effect (polar bond), which overlaps with the $\mathrm{P}-\mathrm{N}_{\mathrm{amine}} \sigma$ bonds upon complex formation.

The X-ray powder diffraction of the bulk samples of (9), (10) and (13) match with the simulated diffraction pattern from the single-crystal diffraction data, as shown in the supplementary material. ${ }^{1}$

3.3. Quantum chemical calculations

Prompted by the unusual cisoid conformation found for (9) in the crystalline state, we decided to examine the molecular structure of the studied compounds by using quantum chemical calculations at the B3LYP/6-31+G* level of approximation. The main objective was to identify the possible effects of crystal packing on the preferred molecular conformation by comparing the experimental X-ray results with the corresponding computed structure for the molecule isolated in a vacuum (Gholivand et al., 2008; Gholivand, Oroujzadeh et al., 2009). Different feasible conformations - formally produced by rotation around the $\mathrm{P}-\mathrm{N}$ dihedral angle of the $\mathrm{O}=\mathrm{C}-\mathrm{N}(\mathrm{H})-\mathrm{P}=\mathrm{O}$ group - have been analyzed for (3), (5) and (9) (for which experimental structural data are available). In all of these computed species the most stable form corresponds to a structure adopting an anti conformation around the $\mathrm{N}-\mathrm{P}$ single bond [the $\mathrm{P}=\mathrm{O}$ double bond in an anti orientation with respect to the $\mathrm{N}-\mathrm{C}(\mathrm{O})$ singe bond]. For better references, in such structures the $\mathrm{C}=\mathrm{O}$ and $\mathrm{P}=\mathrm{O}$ groups are in a nearly perfect antiperiplanar mutual orientation (Gholivand, Mostaanzadeh et al., 2009). The $\mathrm{O}=\mathrm{P}-\mathrm{N}-$ C dihedral angle values computed for (3) and (5) are 165.9 and 171.1°, in very good agreement with the experimentally determined: 161.1 (6) and 171.1 (2) ${ }^{\circ}$, respectively. The cisoid conformation computed for (9) is characterized by a $\mathrm{O}=\mathrm{P}-$ $\mathrm{N}-\mathrm{C}$ dihedral angle of 46.0° with the angle formed by the plane containing the $\mathrm{P}=\mathrm{O}$ and $\mathrm{C}=\mathrm{O}$ bonds being -60.3°, close to the experimental value of $-51.0(5)^{\circ}$.

The computed energy differences between the most stable anti form and the cisoid conformation are 19.13, 19.72 and $20.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for (3), (5) and (9), respectively (electronic energy values corrected by vibrational zero-point energy). These values suggest that the substituent amine group attached to the phosphoryl group exert a minor effect on the idealized gas-phase conformational properties.

These results strongly suggest that the conformational inversion found in (9) for the central dihedral angle around the phosphoramidate moiety could be attributable to the presence of packing effects. In particular, the chain motif found in the crystal of (9), with the distinctive $\mathrm{P}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ intermolecular hydrogen-bond pattern shown in Fig. 9, could be responsible for the exceptional conformational preference found in the solid phase. Such a decisive influence in the

[^2]conformational properties exerted by the hydrogen bond has been largely reported in the literature for biomolecules (Coll et al., 1987; Szewczak et al., 1993) and also for related alkylphosphoryl compounds (Genov et al., 1998).

The financial support of this work by the Research council of Tarbiat Modares University is gratefully acknowledged. We thank the University of Neuchatel for cooperation in crystallography. Thanks to Praemium Academiae of the Czech Academy of Sciences and the institutional research plan No. AVOZ10100521 of the Institute of Physics. We thank Karla Fejfarova from the Institute of Physics for technical help with the CIF preparation. The Argentinean authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), the Agencia Nacional de Promoción Científica y Técnica and the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), the Facultad de Ciencias Exactas, Universidad Nacional de La Plata, República Argentina for financial support.

References

Adelfinskaya, O. \& Herdewijn, P. (2007). Angew. Chem. Int. Ed. 46, 4356-4358.
Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. \& Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331-1336.

Amirkhanov, V. M., Ovchinnikovç, V. A., Turov, A. V. \& Skopenko, V. V. (1997). Russ. J. Coord. Chem. 23, 126-129.

Baldwin, A., Huang, Z., Jounaidi, Y. \& Waxman, D. J. (2003). Arch. Biochem. Biophys. 409, 197-206.
Brandenburg, K. \& Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (1998a). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998b). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Caudle, L. J., Duesler, E. N. \& Paine, R. T. (1985). Inorg. Chem. 24, 4441-4444.
Coll, M., Frederick, C. A., Wang, A. H. \& Rich, A. (1987). Proc. Natl. Acad. Sci. 84, 8385-8389.
Corbridge, D. E. C. (1995). Phosphorus: An Outline of Its Chemistry, Biochemistry and Technology, 5th ed. Amsterdam: Elsevier.
Denmark, S. E. \& Fu, J. (2003). J. Am. Chem. Soc. 125, 2208-2216.
Denmark, S. E., Fu, J., Coe, D. M., Su, X., Pratt, N. E. \& Griedel, B. D. (2006). J. Org. Chem. 71, 1513-1522.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Frisch, M. J. et al. (2003). GAUSSIAN03, Revision B.04. Gaussian Inc., Wallingford, CT, USA.
Genov, D. G., Kresinski, R. A. \& Tebby, J. C. (1998). J. Org. Chem. 63, 2574-2585.

Gholivand, K., Della Védova, C. O., Erben, M. F., Mahzouni, H. R., Shariatinia, Z. \& Amiri, S. (2008). J. Mol. Struct. 874, 178-186.
Gholivand, K., Della Védova, C. O., Erben, M. F., Mojahed, F. \& Alizadehgan, A. M. (2007). J. Mol. Struct. 840, 66-70.
Gholivand, K., Mostaanzadeh, H., Koval, T., Dusek, M., Erben, M. F. \& Della Védova, C. O. (2009). Acta Cryst. B65, 502-508.
Gholivand, K., Mostaanzadeh, H., Shariatinia, Z. \& Oroujzadeh, N. (2006). Main Group Chem. 5, 95-109.

Gholivand, K., Oroujzadeh, N., Erben, M. F. \& Della Védova, C. O. (2009). Polyhedron, 28, 541-547.

Gholivand, K., Pourayoubi, M., Shariatinia, Z. \& Mostaanzadeh, H. (2005). Polyhedron, 24, 655-662.

Gholivand, K., Shariatinia, Z. \& Pourayoubi, M. (2006). Polyhedron, 25, 711-721.
Gilheany, D. G. (1994). Chem. Rev. 94, 1339-1374.
Gubina, K. E., Ovchynnikov, V. A., Amirkhanov, V. M., Fischer, H., Stumpf, R. \& Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 576-582.
Gubina, K. E., Shatrava, J. A., Ovchynnikov, V. A. \& Amirkhanov, V. M. (2000). Polyhedron, 19, 2203-2209.

Iriarte, A. G., Erben, M. F., Gholivand, K., Jios, J. L., Ulic, S. E. \& Della Védova, C. O. (2008). J. Mol. Struct. 886, 66-71.
Karplus, M. (1963). J. Am. Chem. Soc. 85, 2870-2871.
Kirsanov, A. V. \& Makitra, R. G. (1956). Zh. Obshch. Khim. 26, 907914.

Ovchynnikov, V. A., Timoshenko, T. P., Amirkhanov, V. M., Sieler, J. \& Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 262268.

Oxford Diffraction (2007a). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Oxford Diffraction (2007b). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
Pang, Y.-P., Kollmeyer, T. M., Hong, F., Lee, J.-C., Hammond, P. I., Haugabouk, S. P. \& Brimijoin, S. (2003). Chem. Biol. 10, 491502.

Petricek, V., Dusek, M. \& Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Skopenko, V. V., Amirkhanov, V. M., Sliva, T. Y., Vasilchenko, I. S., Anpilova, E. L. \& Garnovskii, A. D. (2004). Russ. Chem. Rev. 73, 737-752.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2006). X-RED. Stoe \& Cie, Darmstadt, Germany.
Szewczak, A. A., Moore, P. B., Chang, Y. L. \& Wool, I. G. (1993). Proc. Natl. Acad. Sci. 90, 9581-9585.
Trush, V. A., Domasevitch, K. V., Amirkhanov, V. M. \& Sieler, J. (1999). Z. Naturforsch. Teil B, 5, 451-455.

Wittine, K., Benci, K., Rajic, Z., Zorc, B., Kralj, M., Marjanovic, M., Pavelic, K., De Clercq, E., Andrei, G., Snoeck, R., Balzarini, J. \& Mintas, M. (2009). Eur. J. Med. Chem. 44, 143-151.
Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Y., Shishkina, S. V. \& Amirkhanov, V. M. (2009). Polyhedron, 28, 37313738.

[^0]: ${ }^{\text {a }}$ Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran, ${ }^{\mathbf{b}}$ Institute of Physics of the ASCR, Na Slovance 2, 18221 Praha 8, Czech Republic, ${ }^{\text {c }}$ CEQUINOR (UNLP-CONICET, CCT La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962 (1900), La Plata, Argentina, IInstitute of Physics, University of Neuchatel, Rue EmileArgand 11, CH-2009 Neuchatel, Switzerland, and ${ }^{\mathbf{e}}{ }^{\text {LaSelSiC (CIC-UNLP-CONICET) Departa- }}$ mento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Camino Centenario y 508, Gonnet, Argentina

[^1]: (C) 2010 International Union of Crystallography Printed in Singapore - all rights reserved

[^2]: ${ }^{1}$ Supplementary data for this paper, including selected ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR and IR spectra for the title compounds are given as supplementary information [XRD patterns simulated from single-crystal X-ray data and bulk materials for (9), (10) and (13) are also given], are available from the IUCr electronic archives (Reference: PS5006). Services for accessing these data are described at the back of the journal.

